Discriminative Feature Selection-Based Motor Imagery Classification Using EEG Signal

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of EEG-based motor imagery BCI by using ECOC

AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...

متن کامل

Motor Imagery Based Eeg Signal Classification Using Self Organizing Maps

MOTOR IMAGERY BASED EEG SIGNAL CLASSIFICATION USING SELF ORGANIZING MAPS *Muhammad Zeeshan Baig, Yasar Ayaz National University of Science and Technology Islamabad, Pakistan *Contact: [email protected] ABSTRACT: Classification of Motor Imagery (MI) tasks based EEG signals effectively is the main hurdle in order to develop online Brain Computer interface (BCI). In this research article, a re...

متن کامل

Discriminative Power Feature Selection Method for Motor Imagery EEG Classification in Brain Computer Interface Systems

Motor imagery classification in electroencephalography (EEG)-based brain–computer interface (BCI) systems is an important research area. To simplify the complexity of the classification, selected power bands and electrode channels have been widely used to extract and select features from raw EEG signals, but there is still a loss in classification accuracy in the stateof-the-art approaches. To ...

متن کامل

Classification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in EEG Signal

The right and left hand Motor Imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchi...

متن کامل

Feature Selection for Motor Imagery EEG Classification Based on Firefly Algorithm and Learning Automata

Motor Imagery (MI) electroencephalography (EEG) is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features, which not only create an additional overhead of managing the space complexity, but also might inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.2996685